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ABSTRACT

The current study extends the application of computational fluid

dynamics to three-dimensional high-lift systems. Structured, overset grids are

used in conjunction with an incompressible Navier-Stokes flow solver to

investigate flow over a two-element high-lift configuration. The computations

were run in a fully turbulent mode using the one-equation Baldwin-Barth

turbulence model. The geometry consisted of an unswept wing which spanned a

wind tunnel test section. Flows over full and half-span Fowler flap

configurations were computed. Grid resolution issues were investigated in two-

dimensional studies of the flapped airfoil. Results of the full-span flap wing

agreed well with experimental data and verified the method. Flow over the wing

with the half-span was computed to investigate the details of the flow at the free

edge of the flap. The results illustrated changes in flow streamlines, separation

locations, and surface pressures due to the vortex shed from the flap edge.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION FOR RESEARCH

High-lift systems continue to be an important consideration in the design of

transport aircraft. This is due to the tremendous impact they have on the

performance of the aircraft. For example, when considering a large, generic, twin-

engine transport a 1.5% increase in CLmax will increase available payload by 6600 lb.

at a fixed approach speed [1]. Similarly, a 1% increase in take-off L/D will increase

the payload by 2800 lb [1]. According to Butter [2], a 5% increase in landing CLmax

is approximately worth a 25% increase in payload. These relationships illustrate

how even a small increase in high-lift system performance can make a big difference

in the profitability of an aircraft.

High-lift system performance is not the only issue, however. Mechanical

complexity also factors into the overall evaluation of the system. The trend over the

years has been to resort to added complexity to gain high-lift system performance

(Figure 1 [3]). This tends to reduce the increased payload benefits illustrated

previously because of the added weight and maintenance costs of the complex high-

lift system. It is possible to gain performance without the added complexity, as

illustrated by the Airbus aircraft in Figure 2 [4]. The Airbus aircraft (A300-A340) all

show a similar CLmax to the Boeing aircraft (B727-747) at a lower complexity level.

A better understanding of high-lift flows is needed to continue increasing the

performance of high-lift systems while decreasing their complexity. It is likely that

the ability to analyze three-dimensional flows will play a key role in such an

improved understanding. Butter predicts that improvements in maximum lift will

come from the ability to design for high Reynolds numbers and from a better



understanding of three-dimensional flows [2]. This study addresses three-

dimensional flows through the computational analysis of a simple high-lift system.

1.2 PREVIOUS WORK

The high potential for payoff associated with high-lift system aerodynamics

has stimulated much research in this field. Almost all of the literature falls within

two categories: survey papers or two-dimensional studies. This section of the thesis

is dedicated to summarizing the major high-lift research to date.

The standard for survey papers in the high-lift arena was established by A.

M. O. Smith's classic Wright Brothers Lecture [5]. Smith's paper started the

"modem" era of high-lift system understanding. He dispelled the popular belief

that the elements of a high-lift airfoil worked together by merely providing

boundary layer control via the slots between elements. He was the first to illustrate

the potential flow relationship between the elements of a high-lift airfoil. Since then,

there have been a number of other survey type papers on the subject [1-4, 6-8]. All

of these build on the findings of Smith [5] to identify areas of high-lift flows that are

not fully understood. As an example, Meredith [1] summarizes some "viscous

phenomena affecting high-lift system performance" as:

2

• Attachment line transition from laminar to turbulent

• Relaminarization of turbulent boundary layers

• Transition of boundary layers

• Viscous wake interaction

• Confluent wakes and boundary layers

• Shock/boundary layer interaction

• Separated flows



These survey papers also typically discuss the current state-of-the-art analysis

techniques, generally commenting on the lack of a suitable analysis tool. A final

element that is common throughout most survey papers is a summary of past high-

lift research at major aircraft companies such as Boeing [6], Fokker [8], or British

Aerospace [2]. In all, these papers offer a cursory description of the flow physics

associated with high-lift systems, in addition to identifying problem areas and

possible analysis methods.

The vast majority of the recent high-lift research has been specifically aimed

at understanding two-dimensional flows, both through experimentation and

computation. The experimental studies have been particularly good at

demonstrating the effects the geometry, Mach, and Reynolds numbers have on the

airfoil lift and drag. Valarezo et al. has published a number of experimental

investigations of three-element airfoils. His papers have been dedicated to slat and

flap positioning [9,10] as well as some work on flow scale effects [11]. Valarezo's

work has demonstrated adverse Reynolds number effects for multi-element airfoils,

where the airfoil Clmax decreases as the Reynolds number increase. Chin et al. has

provided some of the most detailed high-lift flow measurements in his

measurements of the flow over a three-element airfoil [12]. This work has proved

extremely useful to CFD code validation. An innovative, high-lift concept was

investigated by Ross, Storms, and Carrannanto [13] and Storms and Ross [14] in

their investigation of lift enhancing tabs on multi-element airfoils. Their preliminary

findings suggest that in some cases Clmax can be improved with the addition of

simple tabs near the trailing edge of an airfoil.

There have been literally hundreds of attempts to analyze high-lift systems

using coupled inviscid/viscous methods-the few mentioned in this thesis are

representative of most of this work. Most of the research used a two-dimensional

potential method with an integral boundary layer scheme [15-17]. The primary

3



advantage of this approach is the relatively low computational requirements. This

makes these methods very attractive to designers who perform many iterations in

the design process. More recently, quasi-three-dimensional versions of

inviscid/viscous methods have been introduced [18]. This method combines a

three-dimensional lifting surface method with two-dimensional viscous modeling to

compute high-lift flows. The limit to this approach lies in the fact that the complex,

three-dimensional viscous effects are represented with simple two-dimensional

models. Also, with the three-dimensional potential code the computational

requirements increase significantly. One of the more successful inviscid/viscous

approaches is the MSES code [19]. MSES solves the two-dimensional Euler

equations simultaneously with integral boundary layer equations. This method has

given very good results, but is again limited to two dimensions.

With the recent availability of quality experimental data, a great deal of CFD

code validation work on multi-element airfoils has been performed. Due to the

inherently viscous nature of the high-lift flowfield, most of the recent numerical

investigations have solved some form of the Navier-Stokes equations. Perhaps the

most widely used approach involves the solution of the incompressible Navier-

Stokes equations on structured, Chimera grids [20-23]. Others have utilized the

flexibility of the Chimera grid scheme to solve compressible, full [24] or thin-layer

[25, 26] Navier-Stokes equations. Recently, some investigators have successfully

solved Euler [27] and compressible Navier-Stokes equations on unstructured meshes

[28]. All of the Navier-Stokes solutions mentioned here have demonstrated some

ability to accurately resolve high-lift flows. The vast majority of the two-

dimensional computational research discussed here was dedicated to analysis of

conventional high-lift airfoils. A notable exception to this is Carrannanto et al.'s

analysis of the lift-enhancing tab concept [23] experimentally investigated by Ross,

Storms, and Carrannanto and Storms and Ross [13, 14].

4



There are a few papers that do not fit neatly into one of the above categories,

such as the papers that focus on specific flow features. For example, Savory et al.

[29] discusses flow physics in the gaps between elements of a high-lift system_'

Horton [30] dedicates his paper to the physics of high-lift flow separation, and van

Dam et al. [31] discusses boundary layer transition and relaminarization on high-lift

wings. Descriptions of the respective phenomena are included along with

speculations about the driving mechanisms. As the understanding of high-lift flows

increases, more of this type of research is sure to appear. Another paper topic is

based on the development or assessment of high-lift system analysis techniques [32].

In a different type of paper, a summary of high-lift system design at Deutsche-

Airbus is given by Flaig and Hilbig [4].

The lack of three-dimensional research becomes obvious when surveying the

literature. This is made even more surprising by the fact that most of the survey

papers discussed above indicate three-dimensional flow effects as a major driving

force in high-lift system performance. Many of the survey papers contain some

three-dimensional test results, but these offer only integrated effects without the

details needed to begin to analyze the flow physics. On the computational side of

things, very little has been done in the way of modeling three-dimensional high-lift

systems. Most recently, Rogers [21] performed a preliminary Navier-Stokes analysis

of a T-39 Sabreliner wing equipped with a high-lift system. Studies that

computationally investigated complete aircraft with flaps deployed have lacked the

grid resolution to adequately resolve the flow about the high-lift systems. They do,

however, offer hope that a high-lift flowfield could be analyzed computationally

with the proper grid resolution.

5



1.3 SUMMARY OF THE PRESENT STUDY

A CFD approach was chosen for this study because it may provide detailed

flow information. Due to the viscous nature of high-lift flows, the simplest

governing equations that could be used were the incompressible Navier-Stokes

equations. It has been shown that compressibility can become an issue in high-lift

flows for freestream Mach numbers as low as 0.15 [7], but for this study an

incompressible solver was used due to the large savings of computer time. For high-

lift flows at lower Mach numbers (M_ _ 0.2), any appearance of compressibility

usually occurs in the vicinity of the slat element. The configurations investigated

here were all two-element wing sections without slats. Therefore, it was felt that any

loss of accuracy involved with assuming incompressible flow would be kept to a

minimum.

The goal of this study was to apply current computational tools to a simple,

three-dimensional high-lift system. The work began with a two-dimensional

computational study of the flapped airfoil that represented the basic geometry for

the entire study. The two-dimensional work allowed for a grid resolution study and

established a baseline set of results with which to compare at later stages in the

investigation. The first three-dimensional computations were performed for a wing

that fully spanned the test section of a wind tunnel. This was essentially the same

configuration as the airfoils studied in two dimension, except the three-dimensional

flow solver was used. These results were compared to the two-dimensional

computations and experimental data to validate the approach. The major focus of

the research was the computation of the flow over a wing with a half-span flap. A

grid scheme was developed to adequately resolve this flow, so the details of the flow

physics could be investigated.

This project accompanies a wind tunnel test of the same geometry scheduled

to occur in the NASA Ames Research Center 7-by-10 Foot Wind Tunnel. The CFD

6



was done prior to the experiment so that the computed results could be considered

when selecting a run schedule and locating the pressure sensors on the model.

Every attempt is made to match the experimental set-up in the computations so that

a meaningful comparison of the results can be made. This includes matching the

flow conditions and geometries as closely as possible. For this reason, the wind

tunnel walls were modeled in all of the computations. False walls will be needed in

the experiment to shield instrumentation and mounting hardware from the flow,

effectively reducing the size of the test section to 5x10 feet [14]. This 5x10 foot test

section is the one modeled in the computations. The reference chord of the physical

wind tunnel model (unflapped section) is 2.5 feet. The flow at the test section of the

tunnel is at a freestream Mach number of M_ = 0.2 and a Reynolds number, based

on the unflapped chord, of Rec = 3.7X10 6. All length dimensions in the

computations are non-dimensionalized by the model chord.

This thesis contains a description of the geometry, governing equations, flow

solver, turbulence model and boundary conditions used for this study. The grid

strategy developed to resolve flow about a three-dimensional high-lift system in an

efficient manner is discussed. Computations of flow over a two-element wing

between wind tunnel walls are compared with experimental results to verify the

computational approach. The results for a half-span flap wing are also presented.

Conclusions about the computational approach and flow physics are made.

7



CHAPTER 2

GOVERNING EQUATIONS

2.1 INTRODUCTION

This chapter covers the theoretical aspects of the research. The governing

flow equations and related assumptions are discussed in Section 2.2. The complete

derivations are left out of this chapter and can be found in Reference [33]. Section

2.3 is dedicated to a non-dimensionalization and transformation of the governing

equations which make the equations easier to solve numerically. A description of

the Baldwin-Barth turbulence model makes up the final section of this chapter.

2.2 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

This study involved solving the three-dimensional, incompressible Navier-

Stokes (INS) equations. These equations make up a set of four partial differential

equations which are derived from the laws of conservation of mass and momentum.

In tensor form, the equations can be written as follows:

t_Ui

O)
&i

v(a.,+a,j)
-_t + _ "_ +p axj ax,

where i,j =1, 2, 3. The parameters in Equation (1) are defined as follows:

x; represents the three Cartesian coordinates (x,y,z),

u; represents the velocity components (u, v, w),

p is the flow static pressure,

t is time,

8



p is the flow density,
3'

v is the kinematic molecular viscosity of the fluid, and

& is the Kronecker delta function.

As shown, Equation (1) is classified as a mixed elliptic-parabolic set of equations

[34].

The INS equations were selected because they are the simplest set of

equations that could govern a high-lift flowfield. With the possible existence of flow

features such as flow separation, viscous wake interaction, and confluent wakes and

boundary layers, viscosity must be included in the modeling of the flow. Simpler

forms of the Navier-Stokes equations (i.e. thin-layer or boundary layer equations)

neglect aspects of the flow that were important to this study. It is not as obvious,

however, whether the compressible or incompressible form of the Navier-Stokes

equations should be used. It has been shown that compressible effects can appear in

high-lift flows for freestream Mach numbers as low as Moo = 0.15 [7]. The

compressibility appearing at such low Mach numbers is usually restricted to the slat

element because the flow velocities are highest in this region. The simple geometry

investigated in this study contains only main wing and flap elements, therefore

reducing the possible effects of compressibility. Because the incompressible

equations have been successfully applied to high-lift flows in two dimensions [20-

23], it was decided that any loss in accuracy due to the choice of governing equations

was minor when compared to the computational efficiency gained by using an

incompressible flow solver.

In general, there exists no closed form solution to the incompressible Navier-

Stokes equations. Therefore, numerical methods are required to obtain a solution. A

finite difference approach is used in this study. Finite difference methods replace

the flowfield with a finite number of points (grid points) and solve the equations at

these points. The primary concern with this method is that the equations will only

9



resolve flow phenomena that have characteristic scales greater than the distance

between grid points. For laminar flows, this is not a problem because the smallest

scales are on the order of the boundary layer thickness. For turbulent flows, the

problem becomes much more difficult. The smallest scales in turbulent flows, the

Kolmogrov microscales, are far too small to be resolved with grid points for all but

the simplest flows [34]. Not only would points be needed to resolve these scales in

the boundary layer, as with the laminar case, but this resolution would be required

at every place in the flow containing turbulence. There is disagreement about the

exact spacing required to resolve turbulent flow features, but one estimate is that 105

grid points would be required to resolve 1 cm 3 of a typical flow field [34]. Clearly

this is not currently feasible for most practical aeronautical applications. Therefore,

additional assumptions are needed.

One way to overcome this difficulty is to assume that physical flow properties

consist of two components, one component associated with the mean flow property

and the other associated with a turbulent fluctuation. For example, the velocity

would be expressed as

10

u ,, + u' (2)

where u is the total velocity, ¢ is the mean velocity, and u' is the unsteady turbulent

velocity fluctuation. All of the parameters in Equation (1) are replaced with this

representation, and the entire equation is time averaged. The resultant set of

equations are the well known Reynolds Averaged Navier-Stokes (RANS) equations

[34]:

--,,o (3)
cgxi
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a_, a(_,_) -6o_ ÷__ + ,, 1 ( _ij - pu' iu _)
at axj p axi p

[ dffi afro'/ v
where r,j= _-_x +-_x,/ and, =--.

P

A note concerning this time averaging is in order. The time over which to

average the equations is chosen to be large enough tocapture small scale turbulent

effects but small enough not to average out large scale unsteadiness in the flow. In

practice, this is not a problem because the small turbulent time scales are much

shorter than those associated with the flow in general. From examination of

Equation (3) it is seen that Reynolds averaging process changes the equations in two

ways. First, all the parameters in Equation (1) are replaced with an averaged value

indicated by the overbar. The second difference is the addition of an extra term

(-pu'iu5 ) in Equation (3) know as the Reynolds stress. This term is "stress-like"

because it adds "viscosity" to the flow due to turbulent fluctuations. The Boussinesq

approximation uses this stress-like behavior to form the following approximation of

the Reynolds stress based on the laminar stress relation:

-pu'_u9 . a_ 0_i.
=v,t-_x_ +-_xi) (4)

where v, represents the turbulent, or eddy, viscosity. When Equation (4) is

substituted into Equation (3), the following relationship is obtained:

OUi O(UiUj) --l_ij O_pp (V + -- +-_ + __ = + ,.O_i O_j)
OXj p G vOt 3xj _xi

(5)

In Equation (5) all of the effects of flow turbulence are modeled by a term, v,, that

acts like additional molecular viscositty. But v, is an additional unknown, requiring



an additional equation, known as a turbulence model, to make the set determinate

once again. This is known as the closure problem. The turbulence model is

discussed in Section 2.4. All of the equations hereafter are assumed to be time,

averaged unless specifically stated otherwise, and the overbars will be omitted for

convenience.

12

2.3 TRANSFORMED EQUATIONS

The Reynolds Averaged Navier-Stokes equations as presented in Equation (5)

are in a form that can be solved using numerical techniques. In this form, though,

flows over general bodies would be very difficult to obtain because the current

coordinate system would be inconvenient for a practical CFD problem. There is a

non-dimensionalization and a transformation that will greatly simplify the solution

of the RANS equations for complex configurations. First, the equations will be non-

dimensionalized, and second they will be transformed into a generalized set of

curvilinear coordinates.

Many possibilities exist for non-dimensionalizing the RANS equations. The

approach presented here is based on the implementation in the INS3D-UP code [35].

The following expressions are substituted into Equation (5)

t/_ u_ x_ tu,¢ p - p,________¢
=_, _i=_, _'=_, /5= 2 • (6)

Ure/ Xrel Xref tgU re1,

. "vii v
-ri./= _ =, ,= Re -I

/:)Ur_ " Xr_rd

which give

t_/_i

_=_0

_ + = "--_.==ij @ =F ( __j =F _

P _._ v,)(, _._ d._i

(7)
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As with the time average notation, the tildes will be dropped hereafter, but the

variables remain non-dimensionalized unless otherwise stated. As shown, the non-

dimensionalization does not change the form of the equations, but does allow for

more convenient scaling between problems.

A particularly useful form of the equations can be reached by combining

Equation (13) and Equation (14) along with some rearrangement.

dU OE OF dG
--+--+_+--=0 (8)

Ot dx Oy Oz

where

E =e-ev

e.lu U 
UW

[°1"gxx

_xz

e=f-f_, a=g-g_,

I luviwlf=v p'g=

Lw2 +p

I°l I°l
v _ "_yx

/ /

(9)

where e, f, g are convective flux vectors and ev, fv, gv are the viscous flux vectors.

This form of the equations is known as conservation law form. Four equations have

been combined into a single vector equation making its use easier from the

standpoint of derivation and implementation,



Because the RANS equations, Equation (8), are to be solved using finite

difference techniques, the computational mesh has a significant influence on the

solution scheme. For example, if the flow problem is discretized with a mesh that is

homogeneous (equal grid spacing in all directions) the finite difference schemes

simplify dramatically. However, the number of physical problems that lend

themselves to this type of representation are limited. Most applied flow problems

require meshes which are quite curved as shown in Figure 3. The complexity of

finite differences increases so significantly with an irregular mesh that most flow

solvers transform the curved mesh into a homogeneous one. The flow equations are

transformed and solved on the new mesh in the computational domain, and the

solution is inverse transformed to yield results in the physical domain. This

transformation certainly complicates the solution scheme, but the increase in

complexity is less of a penalty than solving the equations on an irregular mesh. The

real difficulty comes from the fact that every mesh must be conformed to suit its

particular problem eliminating the possibility of an analytic expression for the

general transformation. Therefore a general transformation is assumed and

evaluated numerically during the solution process.

For a three dimensional flow, a transformation of the form

14

= _(x,y,z),

rI = ri(x,y,z),

_ ,,,,¢(x,y,z)

(10)

can be assumed. In this case, _, r/, and ¢ represent orthogonal axes in the

computational domain. Also, the mesh is assumed not to vary with respect to time.

A two dimensional relation between the computational and physical planes is

illustrated in Figure 4. Before the equations can be applied to the computational



space they must be expressed as functions of the new space variables. To do thisj

consider the chain rule

3 3 d d

a = _y_+ a a

d 3

(I1)
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a_
where abbreviated partial derivative notation is used (_ - "_-x' etc.). Equation (11)

can be substituted into the RANS equations to transform them into computational

space. Before the real usefulness of the transformation can be appreciated, a little

more needs to be said concerning the metrics of the transformation (_, r/y, etc.).

Expressions for the metrics are needed in order to evaluate transformation. To

derive expressions for the metrics, consider the following differential expressions

[34]:

dr,= x_d_ + x,dri + x¢dC,

dy = ygd_ + y,drl + y_d_,

dz = z_d_ + z,dr I + zcd_

(12)

and similarly

dr/,, r/:dx + r/_y + r/n:/,z,

d_" = _ + _dy + _dz

(13)

which can be put in the matrix form
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A = BC,

C=DA

(14)

if A, B, C, D are defined as follows:

[xxx1A,_ dy, B- y_ y,_ y¢ ,

LdzJ ze zn zU

C = dr I , D = fly

(15)

It follows that

B-_A= B-_BC =C (16)

and since

C=DA (14)

the result

B-1 _D

(17)

is attained. If B is inverted, expressions for the metrics are attained [34].
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[ y.,z: - y¢., -(x,,z, - xcz,.) x_y: - x:y_ ]

x o- -(xoy°-xoy,)]
[ y_z.- y_z, -(x_z.- x.z 0 x_yo- x.y, ]

(18)

J is the Jacobian of the transformation given by

j d(_, r/,_) 1//-d(x,y,z) x/f _ Y,_X'_x¢ I
= = = _ y¢ (19)

d(x,y,z) / e(_, r/, _')
Zn Z_

Obviously, the determinant in Equation (19) must be non-zero for the

transformation to exist. Physically, this prevents the mapping of a zero or negative

cell volume in one domain to a positive cell volume in the other. The individual

metrics in Equation (15) can be solved if the expressions in Equation (18), or more

specifically the partial derivatives x_,y,_,z¢, etc., are known. There are two ways of

finding values for the partial derivatives. They can be computed analytically if a

closed form transformation (or inverse transformation in this case) exists. In general,

however, this relationship does not exist. The alternative method requires the use of

finite differences to evaluate the derivatives. The finite difference approach is used

here and is discussed in the section on differencing (Section 2.4.2). For the rest of

this section it is assumed that all of the metrics are known. With known metrics,

Equation (8) can be transformed by using Equations (29-31).

OU 3E dE dE OF

OF OF dG dG OG
(20)
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This equation can be put back into conservation law form by employing the

following definitions [36]:

U

y'

.--)(E_'x + F_ey + G_,),E1

= l(Erix + frIy + Grl,),F,
J

G, = I(E_ + F_y + G_)

(21)

Equation (20) becomes

dU1 OE1 OF, 3G1
_+_+_+---0 (22)

dt O_ Or/ d_

Recall that the vectors E, F, and G were made up of a convective flux and a

viscous flux. The viscous terms contain partial derivatives that must also be

transformed using Equation (11). The transformation of the viscous fluxes is

omitted here but the details can be found in Rogers [35]. The following is a

summary of the results:

ro]

J[:]' EI=_, F,.= , Gx=_ (23)

J J J

[o +o,v.o wi y o_@ + u_)+ _,uv+ _uw _:= + _,_:,,,+ _,_:=

_.,..,+a:,,_+_,e,+-'=) L_"'=÷_,_"÷_'="3

evl w
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fl m

gl -_

rlxu + rlW + rlzW ]

r#(p + u 2) + rbuv + r#uw

r#uv + rb(p + v2) + r#vw "

r#uw+ rbvw + r#(p + w_)

I u+ _,, +_w ]

_uv + _(p + v_) + _vw I"
_w +¢_ + _@ +wb]

8u Ou•r= = 2v(_ + r/,,-_ + _--_-),

"Eyy m

[ o ],]h = r#r= + r/y:_ + r#w=

r#'r_ + r/y'r_ + r#-ry_|'

r/_w= + rb'r_ + r#w,,j

[ ° 1g"_= _w_ + _w,_+ _,w,,/'

2v(_,-_ + ,gv

2 v(_:_-_- + Ow 8w

v[(_ + ,_u au ,_w
cgw Ow

dfl_ 8u 8u dv dv dv

8v _ On, 8w

2.4 BALDWIN-BARTH TURBULENCE MODEl,

The one-equation Baldwin-Barth turbulence model [37] was used for all of the

cases discussed in this thesis. A number of researchers [22-24] have shown that this

model does a reasonable job in predicting high-lift, multi-element airfoil flows.

Specifically, Mani and Bush [24] have demonstrated a dramatic improvement in

results computed with this model versus those performed using the algebraic

Baldwin-Lomax model [38]. Rogers et al. recently studied four one- and two-

equation models for use in computing multi-element airfoil flows [22]. He

concluded that the all of the models tested "produced very similar results in most

cases." This model requires approximately the same grid resolution as the algebraic

models, which is significantly less than the multi-equation models require [37].



These facts, along with the relatively low computational requirements, made this

model very attractive for the use in this study.

The current implementation of turbulence models in INS3D-UP requires that

the code be run in a fully laminar or fully turbulent mode. All of the current cases

were run in a fully turbulent mode, with no modeling of transition. This did not

hurt the comparison with the experimental data too badly because transition strips

were placed on the upper (x/c = .10) and lower (x/c = 0.05) surfaces of the main

element in the experiments. No transition strips were used on the flap, but the large

adverse pressure gradients typically seen on the upper surface of the flap near the

leading edge are likely to cause natural transition close to the leading edge. Laminar

flow is more apt to exist on the lower surface of the flap which would create an

inconsistency between the computations and the experiment. This difference should

have a minor effect on the flowfield as a whole. Transition strips will be used in the

planned half-span flap experiment.

The Baldwin-Barth model was developed through a simplification of the

standard k- e model equations [39]. The k- e model is a system of two partial

differential equations for k, the turbulent kinetic energy production, and e, the

energy dissipation rate. To combine the k- e equations, a new parameter, Rr, is

defined that includes the turbulent kinetic energy production and dissipation terms,

k 2

RT ,_ _ (24)
VE
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where Rr is known as the turbulent Reynolds number. With this definition, the two

partial differential equations were reduced to a single partial differential equation

for Rr. The equation is iteratively solved for the entire flowfield using a line

relaxation scheme. Once Rr is known, the eddy viscosity, v,, can be computed from
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v, = C( vRODxD_.

/91 = 1 - exp(-y + / A +)

D 1 ,= 1 - exp(-y ÷ / A2÷)

y÷ = u,y / v

(25)

where u, is the friction velocity x/l-wou/Pwou • C = 0.09, A ÷ -- 26, and A2÷ = 10.

and A2÷ are empirically determined constants [37].

C, A +,



CHAPTER 3

NUMERICAL METHODS

3.1 INTRODUCTION

All of the computed results in this study were attained using the INS2D-UP

and INS3D-UP (Incompressible Navier-Stokes with Upwind Differencing) flow

solvers [35]. The INS codes provide a means for solving the Incompressible Navier-

Stokes equations in a manner that is fast, robust, and easy to perform. This section is

dedicated to describing the numerical solution scheme incorporated in INS2D-UP

and INS3D-UP. The three-dimensional method is discussed because the two-

dimensional method is a subset of this case. Only the aspects of the code pertinent

to this research are discussed.

3.2 ARTIFICIAL COMPRESSIBILITY FOR STEADY-STATE PROBLEMS

INS3D-UP solves the Incompressible RANS equations in their primitive

variable form. To enhance convergence, the method of artificial compressibility is

employed [40]. This method simulates a compressible flowfield by introducing

artificial pressure waves which propagate through space. The implementation of

this method involves adding an artificial compressibility term to the continuity

equation.

-r _--flVo V (26)
dl

In this case, fl represents the speed at which the pressure waves travel. It is stressed

that this is not a physical phenomena, but merely a numerical scheme used to

enhance convergence. This relationship does not affect the final solution because the

22
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dp disappear as the solution approaches steady state. As a result,pressure waves (-_-)

the steady continuity equation remains unchanged. For a steady solution, the time

variable t does not represent physical time, so it can be replaced with a pseudo time

term -r [35]. This is done to avoid confusion in cases where a time-accurate solution

is needed. With the addition of (26) to the terms in the RANS equations (22) become

OU1 OE1 dF, dG,

.1 [i1_J , El= , FI- ,J J

_,(p + us) + _yuv+ _w

el = _x.gV "1" _y@ + V 2) + _ZVI4" '

,_uw + _,vw + _(p + w_)

fl

r/x(p + u s) + rlyuv + r#uw frp,uv + rly(p + v 2) + rl_vw '

rl_w + rlrvw + riKp + w _)

fl(_u + ¢,v + _w)

_uv + ¢,(p + :) + _, "

_uw + ¢yvw + _(p + w 2)

al
gl - gvl

J

0 l
IOlf_ = rl_v,,, + rb_:_ + rl:c- ,

r#_- + rl_,__ + rl_,,

I ° 1

(27)

There are physical and numerical advantages to using the method of artificial

compressibility [35]. Physically, the pressure becomes directly coupled to the

governing equations through the artificial compressibility term (26). Most primitive

variable solution schemes require the solution of Poisson's equation for pressure at

the end of each iteration, resulting in an indirect coupling of pressure to the rest of

the flowfield [34]. The direct relationship established by the artificial compressibility



term is not only more physically realistic, but it also speeds up convergence because

Poisson's equation no longer needs to be solved each iteration. This dramatically

reduces CPU time per iteration. In addition to speeding up convergence, the

addition of artificial compressibility also changes the form of the equations from a

mixed elliptic-parabolic set to one of a pure hyperbolic nature [35]. The hyperbolic

classification opens up the possibility of upwind differencing and the use of

marching schemes to solve the equations. These details are the subject of the

following sections.

24

3.3 DIFFERENCING

Before the flow equations can be solved numerically, the partial derivatives

must be approximated in some manner. One widely used representation of the

partials in the aerospace field is the finite difference approximation. Such an

approximation does two things: the flowfield is transformed from a continuum to a

discrete set of points, and the partial derivatives are replaced by algebraic

expressions based on Taylor Series expansions. These two results allow

approximate flow solutions to be obtained that would otherwise be impossible. The

differencing schemes used in the INS3D-UP code are discussed here.

3.3.1 Transformation Metrics

As previously discussed, analytic expressions for the transformation metrics

(10) are generally not known. Therefore some approximations must be made. As

with the governing equations, it is convenient to compute the metrics using finite

difference expressions. This allows the choice of any right-handed, body-fitted

coordinate system in the physical domain as well as a uniform, orthogonal grid in

the computational domain. For a grid that does not vary with time, a second-order
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central difference can be used to

Equation (28) is such an example for a uniform, orthogonal grid.

compute the partial derivatives in the metrics.

axi,j,k 1

x_ ffi_ - 2A_ (xi+l"Y'k - Xi-l'j'k)
(28)

The individual partials can then be spatially averaged to form the metrics. For

example, if an average operator/_ is defined as

1

p_x,.j.a ffi 2A_ (xi+la'k - xi-la'k) (29)

then the final form of the metrics becomes [35]

_xffia_(y.)a.(z_) - _.(y_)at(z.) (30)

3.3.2 Pseudo-Time Derivatives

The flow equations are solved by marching in pseudo-time until a steady-

state solution is reached. Therefore a representation of the pseudo-time derivatives

is required. The flow equations have been put in the following form (Section 3.2):

dU1 dE1 aF1 dG,
-- +-- +-- +-- ,: 0 (31)
a_ a_ a_ a_

or

aUl
-- ffi-R (32)

av

where
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3E1 3F1 3G1

R - a_ +- +- (33)

The pseudo-time derivative can be replaced with a simple, implicit Euler difference

since accuracy in pseudo-time is not required [35].

AU_+I = -R "+1, AU; +1 = U_ +x - U_ (34)
Ar

where n represents the pseudo-time level. The right hand side of (34) is then

linearized to give

'R "
Z { _.g "_ ](un+l Un _R n

- )" (35)

where I is a 4x4 identity matrix. The details regarding the formation of R" and the

solution of the equations are left to subsequent sections.

3.3.3 Convective Flux Differencing

In the previous section, the residual term, R", was defined as

R" o_E_ + o_F1 +-- (36)
,_ @ ,)¢

where

E1 -- el - evl fl -- f_l gl - g_l
J , F1-- , Gx = (23)J J



and

--_'= _(--__E1 1 ,de 1 _'),etc. (37)
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This section will only cover the convective terms while the viscous terms are

discussed in the following section. The convective terms are represented using an

upwind difference formulation. This scheme expedites convergence and also

increases the robustness of the code [35]. CFD codes that utilize central differencing

typically require the addition of numerical dissipation to damp out numerical

oscillations caused by the non-linear convective fluxes. This has been a problem

facing the CFD community for years since the amount of dissipation added can

influence the final solution. Upwind differencing, however, provides implicit

dissipation to the equations, removing the need for any explicit, user-supplied

dissipation. Also, an upwind scheme contributes to the diagonal term of the

Jacobian of the residual, making the scheme nearly diagonally dominant [35]. A

diagonally dominant matrix is much easier to numerically solve than a non-

diagonally dominant matrix. The upwind scheme used in INS3D-UP employs flux

difference splitting based on the sign of the eigenvalues of the convective flux

Jacobian [35]. The details that follow are based on Roe's method for solving the

compressible gas dynamic equations [41] and are taken from Rogers [35].

Each dimension of the problem is considered separately as follows:

de1. ei÷l/2 - _i-1,2 (38)

where _ is a numerical flux given by
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El(U,. ) is the value of E 1 obtained using the values of the primitive variables at G.

_i+1/2 is a dissipation term. A first order upwind scheme results if _i+1/2 is defined

such that

(40)

where _!_ _ is the flux difference across _+ traveling waves. The flux difference can

be evaluated if the following definitions are established

1

U = _(Ui+, +G), G+,,2--- G+, - U_ (41)

and if the similarity transformation is considered. The Jacobian can be expressed as

A = XAX -_ (42)

if A is the matrix with the eigenvalues of A on the main diagonal and zeros off the

diagonal, and X is the matrix of eigenvectors of A. Since the eigenvalues of A

correspond to the slopes of the characteristics, the direction of information

propagation is determined by the signs of the eigenvalues. To model this

phenomena in a physically meaningful fashion, it is necessary to distinguish

between positively and negatively sloped characteristics (this is also necessary for

numerical stability). Therefore, consider the following splitting of the eigenvalue

matrix:



A + = XA+X -1 , A- ,, XA-X -1 (43) -"
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where A " is the matrix containing the _ eigenvalues. This splitting allow_

appropriate differencing based on the local direction of information propagation.

Now the flux difference can be computed by

AE;÷,/2 ,. A±(U)AUi÷,/2 (44)

Examples of higher order schemes, as well as the complete eigenstructure of A, can

be found in Rogers [35].

3.3.4 Viscous Flux Differencing

The final components of the residual are the viscous flux terms. These terms

are differenced using second order central differencing in the INS3D-UP code. For

example

dG, = G,i+l/2,y,k - G,i-1/2,y,k

at (45)

where the values at the half-points are obtained by averaging neighboring values.

1
= :(e,.+l+

Z
(46)

3.4 IMPLICIT SCHEME

The flow Equation (35) is numerically solved using a block Gauss-Seidel

iterative scheme with line-relaxation. The solver sweeps through the computational

domain with varying direction. All of the terms along the current line are solved for
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implicitly, while the terms not on the sweep line are multiplied by the current AU_

and moved to the right hand side. The direction of the sweeps alternates as

prescribed by the user until the residual and the divergence of the flowfield

approach zero. This solution strategy follows that outlined by MacCormack [42].

All of the information in Equation (35) is known except for the AU_ ÷1 term.

The Jacobian of the residual vector is computationaUy very expensive to form, so it is

approximated as described by Rogers [35]. At each iteration the AU_ ÷1 term is

solved implicitly. When AU_ +1 is known, the flow variables can be updated using

Equation (34).



CHAPTER 4

COMPUTATIONAL GRIDS AND BOUNDARY CONDITIONS

4.1 INTRODUCTION

This chapter covers the information relevant to

computational meshes. Before the grids are discussed,

geometries that were studied is included. An overview of the general grid building

scheme, as well as a description of the grid building tools, makes up the third section

of this chapter. Section 4.3 contains the information common to all of the grids that

were built. Specific details for each grid are discussed in the sections dedicated to

airfoil, full-span, and half-span grids. The final section identifies the different

boundary conditions used in this simulation.

the building of the

a description of the

4.2 GEOMETRY

The geometries studied were all based on the NACA 632-215 Mod. B airfoil

section [43]. This airfoil was fitted with two different riggings of a 30% Fowler flap.

Figures 5-7 show the airfoil section with and without the flap elements. The two flap

riggings studied were representative of a take-off and landing configuration. The

rigging details are contained in Table 1. Both configurations were set at 10 degrees

angle of attack.

Condition Deflection (deg.) Gap / Chord Overlap / Chord

Take-off 10.0 0.030 0.042

30.0Landing 0.023

Table 1, Flap Rigging Parameters.

-0.0039

The gap and overlap are defined in Figure 8 and are expressed in units of unfiapped

airfoil chord. As shown, the gap is defined as the vertical distance between the

31
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lower surface of the trailing edge and the highest point on the deflected flap

element. Overlap is the horizontal distance between the main element trailing edg e

and the leading edge of the deflected flap. It is defined so that in a configuratiori"

with negative overlap the flap is positioned completely downstream of the main

element.

The full-span flap cases are a simple extrusion of the airfoil into a wing for

which all of the spanwise stations are identical. The wing fully spans a modeled

wind tunnel test section. The test section is modeled after the NASA Ames 7 -by- 10

Foot Wind Tunnel with the false wall discussed by Storms and Ross [14]. The half-

span flap cases consist of the flapped airfoil over half of the tunnel span with the

unflapped section composing the second half of the span. The half-span flap

geometry is shown in Figure 9.
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4.3 GRID BUILDING PROCESS

The grid building process begins by creating a surface grid from a surface

definition. The difference between the surface definition and grid is largely a matter

of detail. A surface definition consists of enough information (x,y,z locations) to

completely and accurately define the surface shape, whereas a surface grid contains

specific refinement needed to resolve the desired flow features. Also, in the case of a

C-grid, as used for the wing section grids, a wake cut is part of the surface grid. All

of the surface grids in this study were created in two-dimensions and extruded into

three-dimensions where necessary.

The next step is to create a volume grid.

HYPGEN [44] was used for the grids in this study.

The hyperbolic grid generator

HYPGEN begins at the surface

and creates the volume grid by marching outward a prescribed distance using the

solution of hyperbolic partial differential equations. The solution to these partial

differential equations must satisfy two orthogonality relationships and one cell
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volume constraint [44]. A volume grid is generated in this fashion for each airfoil

element. An example of this can be seen in Figure 10.

The final overset grid was created using the PEGSUS code [45]. PEGSUS is'

based on the Chimera scheme of Benek, Buning, and Steger [46]. The Chimera

scheme provides one method of joining individually generated grid zones into a

single region. As part of the merging process, communication must be established

between the zones so that each grid can be influenced by neighboring regions. Also,

grid points in overlapping regions that do not make physical sense need to be

removed from the computational domain. For example, grid points in one zone

should not fall inside a solid surface of another zone. This is illustrated in Figure 11.

In the Chimera approach, the grid zones communicate with one another

through an explicit interpolation scheme. This interpolation occurs at grid

boundaries, imposing a type of boundary condition. Each boundary point is

updated by interpolating flow information from a surrounding cell in an

overlapping zone. In Figure 12, point A is updated by interpolation flow

information from the points marked B. At least one cell of overlap is needed for this

interpolation link to be established by PEGSUS. The flow variables at the points

requiring interpolation are updated after each flow solver iteration. This approach

ensures a smooth solution across the boundaries, but does slow convergence due to

changing values at the boundaries.

PEGSUS allows the user to "cut holes" in a mesh to prevent non-physical

situations as illustrated in Figure 11. When a hole is "cut" all of the points falling

within the hole boundaries are removed from the computational domain. Each grid

point contains an integer flag, in addition to the coordinates of the point, known as

the Iblank value. For a normal point inside the computational domain, Iblank is set

to one. When a point is removed as part of a hole, its Iblank value is set to zero (the

point is said to have been blanked). A zero Iblank value flags the flow solver to
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ignore this point when looping through the grid. An example of how holes are used

to avoid problems in overlap regions is shown in Figure 13. The points that were

previously inside the solid boundary have now been blanked and no longer appear

in the computational domain. Since the grid in which the hole was cut is no longer

continuous, Figure 14, additional information must be provided at the boundary of

the hole. These points are known as fringe points. The flow variables at the fringe

points are found by interpolating from other grids in the manner described above.

Care must be taken when defining the holes so that at least one cell of overlap exists

at all hole boundaries. In Figure 12 sufficient overlap exists, and point A will be

updated by interpolating the values at the four B points.

The grids are merged and interpolation stencils are formed by the PEGSUS

code. The user provides the individual grids and a PEGSUS input file. The input

file contains the definition of hole and outer boundaries in addition to zone location

information. Using the zone positioning capabilities of PEGSUS, individual zones

can be translated and rotated so that they are correctly placed with respect to the

other zones. In this study, the model angle of attack was set using this feature. An

interpolation database is created for all of the points that require updating by

interpolation and is written to a file. The multi-grid and interpolation database files

are used by the flow solver.

4.4 AIRFOIL GRIDS

The grids used in this study were modeled after those used by Carrannanto et

al. in his study of multi-element airfoils [23]. In this study, however, wind tunnel

walls were also modeled in the computations. This was done to obtain results that

would be more directly comparable with wind test results. C-grids were used to

model the airfoil elements and an H-grid was used to model the wind tunnel walls.

A grid resolution study was performed to investigate the effects of grid density on



the flow solution and to establish grid density requirements for the three-

dimensional work. It was found that the resolution used by Carrannanto et al. was

adequate to resolve the flow physics up to angles of attack near Clmax. Since it was

desired to have the same cross-sectional grid for the two- and three-dimensional

cases, and since the grid size must be kept as small as practical for three-dimensional

studies, no grid points were added.

The grid sizes for the main and flap elements were 227x80 and 155x59

respectively. The circumferential grid spacing was 10 -3 chords at the trailing edge of

both elements. The wall spacing was 10 -5 chords (Y+ave-1) for both of these zones.

In the normal direction, the main element grid extended approximately two chords

while the flap grid was on the order of 0.15 chords. Wake cuts extended 2.5 chords

downstream for the main element and 0.3 chords for the flap. The wake cuts for

both elements were located in the manner suggested by Carrannanto et al. The

wake of the main element followed the upper surface of the flap and was offset by

the gap between the elements (see Figure 15). Once aft of the flap element, the wake

cut made a straight line parallel to the chord of the deflected flap. The wake cut of

the flap grid extended from the trailing edge of the flap along the flap chord line.

Elliptic smoothing was applied to the flap grid aft of the flap trailing edge as

suggested by Carrannanto et al. Smoothing expands the circumferential grid lines in

the vicinity of the wake cut, reducing the aspect ratio of the grid cells in this region.

The result is accelerated convergence and improved interpolation between grid

zones [23]. Trailing edge thickness was neglected in the computations for both

elements. It was felt that any effects of the blunt trailing edges would be local in

nature and would not reduce the overall accuracy of the computations. More recent

results have confirmed this assumption [47].

The wind tunnel grid was designed for computing the effects of inviscid wind

tunnel walls on the model. The size of the grid was 85X30, and resolution studies
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showed very little sensitivity to the dimensions of this grid. The grid extended ---15

chords in the streamwise direction. The walls were located two chords above and

below the center of the airfoil at zero degrees angle of attack. The vertical distance'

between the walls was constant along the length of the tunnel grid. The physical

wind tunnel walls diverge slightly through the test section to account for the growth

of the boundary layer, and this divergence was neglected in the computations.

The three zones were combined into a two-dimensional multi-zone using

PEGSUS. The complete grid contained approximately 30,000 grid points. An

example of an airfoil grid can be seen in Figure 16. This grid represents the landing

configuration at ten degrees angle of attack.
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4.5 FULL SPAN FLAP GRIDS

The full-span flap grids provided a direct extension of the airfoil work into

three-dimensions. The two-dimensional planes were copied and stacked together in

a spanwise row to form a three-dimensional grid prior to the merging of the zones

using PEGSUS. This allowed for different spanwise resolution in each zone. The

work in two-dimensions allowed all of the Chimera details to be worked out prior to

creating the three-dimensional grid. This offered significant savings of both time

and computer resources. Part of the reason for studying this configuration was to

determine the number of spanwise planes needed to resolve any three dimensional

flow. As the study progressed, no strong effect of spanwise resolution was seen for

this case. The final grid sizes were 227x30x80, 155x30x59, and 85x30x30, for a total of

900,000 points. The physical spanwise dimension was determined by the wind

tunnel size, including the presence of false walls needed for the experiment [14].

The span of the grid was 2 chords.



4.6 HALF SPAN FLAP GRIDS

The half-span grid was composed of six zones. Cross sections of three of

these zones, the flapped main element, flap element, and wind tunnel grid, were

identical to those used in the two-dimensional computations. The flapped part of

the wing extended from the mid-span of the tunnel to a wind tunnel wall. The other

half of the tunnel was spanned by the unflapped wing element. This cross section

was modeled using a C-grid of dimensions 185X52. As with the other wing sections,

the wall spacing was 10 -5 chords with a circumferential trailing edge spacing of 10-3

chords. The wake cut of this grid extended 2.5 chords behind the wing in a direction

parallel to the section chord. The outer boundaries were located a normal distance

of two chords from the surface.

The remaining two zones were needed to model additional solid boundaries.

One such surface was the exposed region where the flapped main element met the

urfflapped main element at the mid-span. The flapped section has a smaller chord

than the unflapped section as well as a cut-out, or cove, region where the flap is

stowed when the high-lift system is not in use. When the flap is deployed, this

mismatch area is exposed and must be modeled. Figure 17 illustrates the location of

this surface. The grid used to represent this surface was an H-grid deformed to

match the airfoil contours. This grid is hereafter referred to as the patch grid. As

with all of the grids, the patch grid was initially generated as a two-dimensional

plane. The plane contained 33x33 grid points. Figure 18 shows a patch grid plane.

The final zone was needed to model the flap edge surface. The grid used to do this

was also an H-grid deformed to match the flap cross section. This plane contained

36x40 points. A flap edge grid plane is shown in Figure 19. Both of these grids were

expanded outward to establish an overlap region so that interpolation could occur.

As with the full-span flap case, all of the grid planes were copied into

spanwise stacks to fill out the third dimension. Forty spanwise grid planes were
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used for the following grid zones: flapped and unflapped main elements, flap

element, and wind tunnel. The patch and flap edge grid zones each contained ten

spanwise planes. The three dimensional grids were then passed to PEGSUSfor

merging and establishing the interpolation links between the zones. Proper Chimera

interpolation between grids proved a challenge in two locations; the overlap region

between the flapped and unflapped main elements and the flap edge region.

The mid-span location was complicated becausetwo grids of different shapes

were required to fit together and communicate. As mentioned, the shape difference

between the main element sections was corrected through the use of the patch grid.

The first spanwise plane of the patch grid was located at the solid surface, coincident

with an unflapped grid plane, and the grid was marched 1.5X10-3 chords into the

flapped portion of the grid. The interpolation between the main element grids was

more difficult to establish. The unflapped main element extended 10-3 chords and

four grid planes into the flapped element grid. This overlap allowed the end planes

of each grid to receive interpolated information from the interior of the other grid.

This overlap created an additional problem, however. The inner plane of a C-grid is

a computational boundary, hence requires boundary information for a solution to

exist. For the most part, the flapped and unflapped surfaces were coincident, so

solid surface boundary conditions could be used. Near the trailing edge, this

approach did not work becausea portion of the flowfield in one grid (flapped main

element) would have coincided with a solid surface in the other grid (unflapped

main element). This would have created an inconsistency in the solution. To

circumvent this, the portion of the unflapped trailing edge that extended into the

computational domain of the flapped grid was defined as a Chimera boundary, and

thus was updated by interpolation. Figure 20 shows a crosssection of the grid in the

overlap region with the appropriate boundary conditions shown.



....................._H: _: ::::__:i:< <:i:_:!<<_<i<<!:_,_<:_:_:__:<i:!_:_<i:<<_i_ !::__i,i<< <:i<_i_::i_:_,_<_!_<:_!iii_i_!_i'i_i<_<:i!_i_i_:<:iii!iii:iii<:iiii_ii_!i_!_i::iii_iiiiiiiii!iii<_ili:iiiii_ii:!ii̧!<I<:<!ii̧ ii<_ii<ii̧ii_ii<ii!!!i_ii!iil_!_ii!!_!_ii!ii_iiiii_!_i!_i!i_iiii_iiiii!iii_i_i_i_iiiii_iiiiiiiiiii_iiiii_i_iii!i_iiiii_i!i_iiiiiiiiiiiiiiiiiiiii___iiiii]iiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiii_

The flap edge region was simpler to set up, but turned out to play an

important role in the convergence of the solution. The first approach was to place

the last grid plane of the flap edge grid at the solid surface and march the grid away,

from the surface as was done with the patch grid. Using this grid scheme, the

solution would not converge. This was traced to an unsteady flow separation

occurring at the comer of the flap edge and flap surface. The flap edge grid was not

able to resolve this feature with only boundary information. The problem was fixed

by extending the flap edge grid three grid planes into the flap surface. The points

inside the surface were blanked from the computation and the solid surface

boundary condition was applied to the plane that was third from the end of the grid.

This allowed the flap edge grid to resolve the flow separation at the comer, and the

solution converged.

No grid resolution study was performed for this grid due to the

computational requirements for a single solution. Because the solution captured

small scale flow features, such as secondary separations at the flap edge, the

resolution appeared sufficient for this study. The final grid contained 1.8 million

grid points. Figure 21 shows the final surface grid for the half-span flap geometry in

a landing configuration.
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4.7 BOUNDARY CONDITIONS

All of the solid surface points on the wing were modeled using a no-slip

boundary condition. This condition specifies zero velocity and a zero normal

pressure gradient at the surface. Because a C-grid topology was used, wake-cut

boundary conditions were also needed. Wake points are updated by a first order

averaging of the points on either side of the wake cut. The wind tunnel walls were

represented by slip-walls which impose a zero normal gradient for all flow

variables. The tunnel inflow condition was prescribed with uniform normal velocity



40

and constant total pressure. The outflow of the tunnel consists of a constant static

pressure and extrapolated velocity. The outer boundaries of all grid zones falling

inside the wind tunnel grid were Chimera boundaries.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 INTRODUCTION

This chapter includes a presentation of the results of this research. The Airfoil

Results section establishes a starting point for this study. Much initial work was

done in two-dimensions due to the faster turn around time associated with this

simplified problem. The full-span flap investigations provided a good validation

case for the three-dimensional flow solver. This case also allowed for the evaluation

of the grid development work performed in two-dimensions. The final section of

this chapter provides a discussion of the interesting results seen in the half-span flap

computations. Specific attention is given to the differences between the full- and

half-span cases.

5.2 TWO-DIMENSIONAL AIRFOIL RESULTS

To make comparisons between solutions meaningful, it was important to

establish a convergence criteria so that all solutions could be converged to the same

level. The INS2D-UP codes writes the maximum divergence of velocity value at

each iteration. From a physical point of view, the divergence represents how well

mass is conserved for the incompressible flowfield. With the artificial

compressibility term added to the continuity equation, the divergence values

indicate the levels of unsteadiness in the solution. As the divergence approaches

zero, the solution approaches steady-state. For this work, the solution was iterated

until the divergence of velocity fell to the order of 0.1. This typically corresponded

to a residual reduction of five orders of magnitude. Convergence was reached in

300-500 iterations for angles of attack below Clmax. Near stall, up to 1200 iterations

were sometimes required to obtain a steady-state solution due to the inherent
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unsteadiness in the flow. No computations were performed beyond stall. A 500

iteration run using 30,000 grid points required approximately eight minutes of CPU

time on a Cray C-90 supercomputer. _

The computed two-dimensional results are compared to data taken in an

unpublished study at NASA Ames Research Center. The experiment occurred in the

U. S. Army 7- by 10- Foot Wind Tunnel. The flow conditions for the test were

freestream Moo = 0.9. and Re = 3.7x106 based on the undeflected airfoil chord. The

model had an unflapped chord of 2.5 feet. Due to mounting hardware, false walls

were placed in the tunnel, reducing the effective test section span from seven to five

feet. The lift coefficients were computed from an integration of pressures measured

at the model mid-span. Boundary layer control was used at both walls to maintain

two-dimensional flow at the wing-wall junction. Three blowing slots were located

on each side wall, two above the upper surface of the main element and one above

the upper surface of the flap. Air was injected along the wall parallel to the wing

surface. The blowing rate was adjusted until the pressures at three spanwise

stations agreed. The data used for comparison was not corrected for any wind

tunnel wall effects.

Figures 29. shows the variation of lift coefficient with angle of attack for the

10 ° flap deflection (take-off) case. The agreement between computations and the

experimental data is quite good up to stall. Stall is not accurately computed due to a

lack of circumferential grid resolution on the main element [47]. Stall on a flapped

airfoil typically occurs when the separation point on the main element suddenly

shifts forward with a small increase in angle of attack. The relatively sparse grid

resolution along the mid-chord region of the airfoil prevents the accurate

computation of this separation point shift. Higher grid resolution has shown to cure

this problem [47], but would not be practical in the three-dimensional computations.
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The computed results show a slight decrease in lift-curve slope compared to the

experiment. Also, an offset of 0.1 in C1 is seen at zero angle of attack.

A similar plot for the 30 ° flap deflection (landing) case is shown in Figure 23.

The trends are similar to those shown for the take-off configuration. The most

notable difference between Figure 22 and Figure 23 is the increased offset between

experiment and computations in the landing case. The offset between the curves is

0.3 in C1 at zero degrees angle of attack.

Figures 24-27 present comparisons of computed and experimental pressure

distributions. Figure 24 shows the pressure distributions for the take-off

configuration at 0 ° angle of attack. The agreement is good over the upper surface of

the main element, but on the lower surface the agreement is poor. This was an

unexpected result because the flow on the lower surface is largely potential and is

usually relatively easy to predict accurately. For example, the two-dimensional

version of the potential flow code PMARC was used to compute the pressures about

this geometry without wind tunnel walls [48]. Figure 28 shows the resulting

comparison. The PMARC results agree very well with the INS2D-UP results. The

fact that these two very different methods gave such similar results provides

confidence in the computational results. Also, INS2D-UP has proven the ability to

accurately model multi-element airfoils in many cases [20-23]. This would suggest

two possible sources of the disagreement: an error in the experimental data exists or

there was some difference between the experimental and computational conditions.

The overall agreement on the flap element is much better than on the main element.

The most noticeable difference occurs on the upper surface at the trailing edge. The

experiment shows a sudden pressure coefficient (Cp) increase at the most aft

pressure tap. The computed results do not show this because no trailing edge

bluntness was modeled. Ashby has verified that trailing edge bluntness is the

source of this disagreement [47]. The suction peaks are captured for both elements.
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The agreement appears much better for the c_=10 ° case shown in Figure 25.

The only visible disagreement is in the area of the suction peak on the main element.

INS2D-UP slightly under predicted the value of maximum suction. This small

difference could be attributed to local compressibility in the experiment which is not

present in the computations.

The landing configuration cases, Figures 26-27, show results similar to those

discussed above. However, the discrepancy between the CFD and experiment is

visible on both the upper and lower surfaces for c_ =0 °. As with the take-off flap

deflection, the agreement improves at the higher angle of attack. A suction spike is

visible at the leading edge of the main element in Figure 27. This is a local

phenomena caused by a discontinuity in the curvature of the surface grid. Figure 29

shows a plot of the second derivatives of the airfoil surface. The closer the curvature

discontinuity is to the suction peak, the more noticeable the pressure spike becomes.

A similar phenomena occurs on the flap element but is less noticeable because of its

lower magnitude.
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5.3 FULL-SPAN FLAP RESULTS

The full-span flap case provided a logical transition point from the two-

dimensional airfoil work to a three-dimensional study. The goal of this phase of the

research was to gain confidence in the ability of INS3D-UP to predict high-lift flows

while simultaneously studying the effects of spanwise grid density. It was also

hoped that any inherent differences between INS2D-UP and INS3D-UP would be

apparent. These comparisons could be used to gain insight into the effects of wind

tunnel walls and three-dimensional turbulence in two-dimensional wind tunnel

testing. A full-span flap solution required 600 iterations to converge. For this case,

convergence was set at the point where the divergence of velocity fell below unity.

A slightly less stringent convergence criteria was used in three dimensions due to



the increase in computational requirements. Convergence took 12 hours on a Cray

C-90 supercomputer.

The two-dimensionality of the full-span result can be seen in Figure 30. This'

figure shows the pressure distribution for three spanwise stations. The computed

pressures are the same at every spanwise location. The pressures did not change

with varying spanwise grid density. Even in regions of separated flow, the

pressures did not change noticeably, and the spanwise velocity perturbations were

so small in magnitude that the flow remained essentially two-dimensional. This can

be attributed to several factors. Most importantly, the grid planes were identical at

every spanwise station. No physical wing is geometrically identical along its span,

and these slight surface variations introduce three-dimensional disturbances into the

flow. Turbulence itself is also inherently three-dimensional in nature. In a real,

separated flow, the presence of turbulence is enough to generate a three-dimensional

velocity field. Because CFD requires the use of turbulence models, some of the

three-dimensionality of turbulence is lost. This is because the models are designed

to approximate the eddy viscosity of turbulence, not the physical fluctuations in the

flow. The fact that inviscid walls were modeled in the computations removed

another possible source of three-dimensional flow disturbances. A wall with a

boundary layer that impinges on the model has the possibility of introducing

spanwise velocity perturbations. With an inviscid wall, no boundary layer was

present, so two-dimensional flow was maintained at the wall.

The pressure distributions computed with INS3D-UP are compared with the

INS2D-UP results in Figure 31. As shown, the two codes predict nearly identical

pressure distributions for this geometry. Figure 32, shows a good comparison

between experimental and computed pressures. Since the full-span flap results so

closely match the two-dimensional results, it is expected that other configurations

would show the trends discussed in Section 5.2. This demonstrated that there were
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no fundamental disagreements between the INS2D-UP and INS3D-UP codes, giving

some confidence that INS3D-UP could predict high-lift flows. Also, the results

suggested that much work, such as grid studies, could be done in two-dimensions, ++

greatly reducing the computational requirements. Because of these results, it was

felt that no additional knowledge would be gained by computing additional full-

span configurations.
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5.4 HALF-SPAN FLAP RESULTS

Solutions for the take-off and landing configurations at ten degrees angle of

attack and a Reynolds number of 3.7 million were computed. In most instances, the

effect of the flap edge was the same in both flowfields, but was exaggerated in the

landing flap deflection case. Therefore the results presented are for the landing

configuration unless specifically stated otherwise. Results from the take-off case are

included where they differ significantly from those of the landing case. Both of

these solutions were iterated until the flow divergence fell below one. A run

required approximately 550 iterations and twenty-four Cray C-90 hours to converge.

Figure 33 provides a general view of the flowfield about the half-span flap

wing in the landing configuration. This figure contains particle traces colored by

velocity magnitude. The surface particles are restricted to the surface which would

represent oil flow patterns in an experiment. The particle traces away from the

surface are unconstrained. The blue regions represent velocities well above free

stream, and the red areas are velocities close to free stream. This figure illustrates

the large scale effects of the flap edge: the flap tip vortex, large amounts of spanwise

flow, and separation lines can all be seen. Figure 34 shows the same particle traces

for the take-off configuration. A weaker tip vortex is present and the amount of

spanwise flow has decreased. The separation lines have also nearly disappeared.



The presenceof the flap edge greatly modifies the lift distribution of the wing.

Figures 35 and 36 show plots of the spanwise lift distribution for the landing and

take-off configurations. In both cases, an abrupt change in lift is seen at the location

of the flap edge. This change is caused by a discontinuity in the chord and camber

distributions as the wing section changes from the unflapped to the flapped airfoil.

For the landing case, the total section lift coefficient, referenced to the unflapped

airfoil chord, changes by 0.3 at the flap edge. This change in circulation (lift) causes

vorticity to be shed into the wake in the form of a tip vortex. This vortex in turn

induces a velocity field which further modifies the lift. The induced velocity

appears as upwash on the unflapped wing segment and as downwash on the

flapped half of the wing. Upwash increases the local angle of attack which increases

the lift. This explains why the lift coefficient on the unflapped side of the wing is

much higher than the two-dimensional value at the same angle of attack.

Conversely, the lift on the flapped half of the wing is much lower than its

corresponding two-dimensional value. The effect of the vortex varies with the

distance from the flap edge. If the wing span were extended infinitely in both

directions, the lift coefficients would eventually return to the two-dimensional

values.

The shape of the takeoff and landing lift distributions differ slightly in the

vicinity of the flap edge. In the takeoff case (Figure 35), the lift on the flap varies

across the span, while almost no change in lift occurs over the span in the landing

case (Figure 36). The velocity induced by the tip vortex changes the local angle of

attack across the span, and the sections nearest the tip are affected the most. The

change in the angle of attack is responsible for the lift changes for the takeoff

configuration. In the landing case, the presence of separated flow modifies the

shape of the lift distribution. As the local angle of attack decreases near the flap

edge, the separation point moves aft (Figure 33). The reduction in the amount of
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separated flow causes an increase in the lift generated by the section. In this case,

the lift gained by reducing the size of the separated region is very nearly the same

magnitude as the decrease in lift due to the reduced angle of attack. Therefore, the _,

lift on the flap remains nearly constant over the span.

The spanwise variation in lift is caused by variations in the pressure

distributions. Figure 37 illustrates this phenomena for two stations along the

unflapped half-span. The increased upwash nearest the flap edge (i.e. mid-span)

has increased the effective angle of attack compared to the section near the wall,

decreasing the pressure coefficients on the upper surface of the wing. A slight

increase in the lower surface pressure coefficients at mid-span can also be seen. The

most significant difference between the two pressure distributions shown in Figure

37 occurs at the trailing edge. The section closest to the flap edge displays a slightly

negative pressure gradient at the trailing edge, while the section near the wall shows

continuing pressure recovery all the way to the trailing edge. This can be explained

by the high induced velocities at the trailing edge of the mid-span section. These

induced velocities create a region of increased dumping velocity (the velocity at

which the flow leaving the trailing edge must adjust to), decreasing the Cp to which

the pressure must recover. For an airfoil without a flap, the trailing edge condition

is such that the flow tends toward freestream as it leaves the airfoil surface. In a

multi-element airfoil, the flow leaving the trailing edge of an upstream element often

has the tendency to approach a velocity much higher than freestream due to the high

velocities induced by the downstream element. The unflapped portion of the wing

is more susceptible to this phenomena because of the exposed edge created by the

mismatch in chord at the junction of the flapped and unflapped sections. In all

cases, the pressure distributions for sections between the mid-span and the wall fall

between the two curves shown in Figure 37.
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Figure 38 shows a similar plot for the flapped main element section. In this

case the upper surface Cp's become more negative and the lower surface Cp's

become more positive as they move away from the mid-span toward the wall. As '

with the unflapped section, the largest differences are seen at the trailing edge. No

upturn in the pressure distribution is seen at the trailing edge of the mid-span

section in this case. The upper surface velocities at the flapped trailing edge must

match the velocities on the upper surface of the unflapped portion of the wing. The

upper surface pressures must adjust so that they are continuous across the junction

between the flapped and unflapped sections. Also, the lower surface of the flapped

trailing edge is perpendicular to the solid surface formed by the patch grid because

the flapped chord is five percent shorter than the unflapped chord. This solid

surface allows a pressure difference between the upper and lower surfaces upstream

of the trailing edge. Away from the mid-span, the pressure distribution quickly

begins to match the distribution at the wall.

The greatest variation of pressure distributions occurs on the flap element.

Figure 39 shows pressure distributions for three spanwise locations; at the flap edge,

0.1 chord from the edge, and at the wall. At the flap edge, the pressures are

dominated by the tip vortex which completely alters the shape of the distribution.

As shown in the plot, the leading edge suction peak is suppressed at the flap edge.

Away from the edge, the flow accelerates around the airfoil leading edge as it moves

away from the stagnation point. On the edge, however, the flow is not forced to

follow a path over the airfoil surface: it can move spanwise as well. In this case, the

flow does move in a spanwise direction toward the edge as it leaves the stagnation

point, relieving the suction peak. The magnitude of the relief varies with spanwise

position. As seen in Figure 39, the peak has nearly reached the wall value at a

distance of 0.1 chord from the edge. The velocities over the aft part of the airfoil's
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upper surface are higher at the edge than near the wall. The tip vortex travels just

above the upper surface, inducing a region of high speed flow.

A consequence of the spanwise pressure variations is a shifting of the

separation point location along the span. In Figure 40 surface particle traces

illustrate a separation line on the flap. The separation point is farthest forward at the

wall and farthest aft at the tip. The separation location is closely related to the

pressure distributions discussed in the previous paragraph. As was shown in Figure

39, the flap pressure recovery is steepest at the wall and almost non-existent at the

flap edge. Also shown in Figure 40 is the location of the two-dimensional separation

line for the flapped airfoil at the same angle of attack. At the wall, the two- and

three-dimensional flows separate very close to the same chordwise position. The

separation points are essentially the same due to the resemblance of the

corresponding flap pressure distributions. Figure 41 shows the half-span flap

pressure distribution at the wall compared to the two-dimensional pressures. Since

the distributions are almost identical, it is not surprising that the separation points

are in the same location. The total lift generated by these sections is different (Figure

35), which implies that the lift coefficients on the main elements must also be

different. The different pressure distributions (different lift coefficients) would

cause the wakes leaving the main element to be different in both cases. Since the

flap pressures and separation points are nearly the same, it can be concluded that

the flap boundary layer in this case is not sensitive to small changes in the main

element wake.

Figure 42 shows a comparison of the two and three-dimensional separation

lines for the unflapped half-span. For this portion of the wing, the two-dimensional

separation point is farther aft than the three-dimensional separation point at the

wall. This is an expected result because the three-dimensional section is operating at

a higher lift-coefficient than the two-dimensional section due to the upwash induced
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by the tip vortex. For a given geometry higher lift usually results in earlier

separation. Figure 43 shows a comparison of the wing surface pressures at the wall

with the airfoil pressures. The steeper upper surface pressure recovery of the three-

dimensional case is clearly the cause of the earlier boundary layer separation. Near

the mid-span, however, the three-dimensional separation point is aft of the two-

dimensional point, even though the three-dimensional section is generating more

lift. The favorable pressure gradient at the trailing edge of the mid-span section,

seen in Figure 37, enables the boundary layer to remain attached longer than in the

two-dimensional case. Very close to the mid-span no clear separation line can be

seen, as there is a large region of spanwise flow.

Figures 44-46 show the spanwise variation of pressure distributions for the

take-off configuration. Figures 44 and 45, which show the pressures for the main

element segments, are very similar to Figures 37 and 38. The differences across the

span are less apparent for the take-off configuration. This is expected because the

trailing vortex is weaker for the take-off case than it is for the landing case: the

vortex strength is proportional to the lift on the flap which is higher for the landing

configuration. The flap pressures do differ between the take-off and landing

configurations. Figure 46 shows the variation of pressure coefficients over the span

of the flap. Not only is the shape of the distribution at the edge different, but the

effect of the edge is felt farther away from the edge in the landing case. The

pressures 0.1 chord from the edge in the take-off case resemble the wall pressures

more closely than those at the wall in the landing case. This is expected because of

the weaker tip vortex in the take-off case. The leading edge pressures are

suppressed more in the take-off configuration. The pressure coefficients decrease

over the aft two thirds of the flap due to the presence of the tip vortex above the

surface. As in the landing case, the vortex induces a high local velocity near the flap
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edge, reducing the pressure. From Figure 46 it appears that most of the lift on the

flap near the edge is vortex induced.

The tip vortex primarily responsible for the differences between the two and

three-dimensional flows is created by the sudden change in circulation that occurs at

the flap edge. Physically, the vortex arises from the pressure imbalance between the

upper and lower surfaces of the flap. High pressure flow on the lower surface of the

flap moves around the flap edge toward the low pressure region on the upper

surface. This rotational flow structure is convected downstream by the local flow

velocity which turns the structure into a vortex filament. Since the pressure

difference between the upper and lower surfaces imparted angular momentum to

the vortex, it has a tendency to continue to rotate until it is damped out by the fluid

viscosity. This vortex decay usually occurs far downstream of the wing tip which

created the vortex.

Figure 47 illustrates the location of eight positions over the upper surface of

the flap investigated using particle traces. Figures 48-55 show the particle traces for

these eight stations. The particles are restricted to the planes shown, so the plots

contain projections of the streamlines onto the planes. In Figure 48 the vortex is not

yet apparent, but the flow can be seen to travel parallel to the flap edge and around

the corner onto the flap surface. The first signs of a vortex core are visible in Figure

49. The vortex filament is seen to increase in size as it progresses downstream

(Figures 50-55), and it remains above the flap from its beginning to the trailing edge.

The flow patterns shown in Figures 48-55 correspond to the surface flow patterns

shown in Figure 40. The flow on the surface moves away from the flap edge before

the vortex core is present. After the vortex appears above the surface, it induces a

velocity beneath it towards the flap edge. The particle traces in Figure 40 show the

changing direction of the flow near the flap edge due to the vortex. The vortex for

the take-off flap deflection travels along a similar path.



It appears that leading edge flow near th e flap edge moves in the spanwise

direction toward the flap edge. The flow separates at the flap edge forming a small

recirculation region. The blue particle traces near the leading edge in Figure 56

show the recirculation region. Fluid particles not caught in the recirculation region

turn so that they flow along the flap edge. The particles begin to move towards the

upper surface as they feel the influence of the flow leaving the lower surface. This

can be seen in Figure 56. When they reach the upper surface, the particles form

another small separation bubble as they flow around the corner formed by the upper

surface and the flap edge. It is believed that this high vorticity bubble is the

beginning of the vortex core. The bubble is barely visible at the corner in Figure 47.

An aspect of the flow that demonstrates the resolution provided by the flap

edge grid is the secondary recirculation regions seen in Figure 57. These flow

structures are fed by the fluid leaving the upper and lower surfaces at the flap edge.

The flap edge grid did a good job of resolving the flow in this region, but its small

size made the interpretation of the results difficult. Much of the interesting flow

physics occurs across the boundaries of the flap edge grid, requiring the tracking of

the flow from one grid zone to another. Since the grid resolutions are somewhat

different in each zone, smooth transitions between zones is not always possible. The

other drawback with the current flap edge grid is that a large number of Chimera

boundaries occur in the region of highest flow activity. The information is passed

between zones via a low-order interpolation scheme, so accuracy is lost in regions

where the highest accuracy is desired. This also slows convergence somewhat

which increases the required computer time for a given case. Ideally, the flap

surface and edge would be modeled with a single zone.

Insufficient resolution has been identified in two regions of the grid. The

vortex formation and dissipation were not adequately modeled by the current grid.

The formation of the vortex is not well resolved due to a lack of spanwise and
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chordwise grid density in the flap grid at this point. The spanwise spacing was kept

at the current size so that adequate overlap could be obtained while keeping the

overall grid size at a minimum. The chordwise spacing was determined from two_

dimensional results, and the mid-chord region does not typically require many

points to resolve for unseparated flows. In the current computations the trailing

vortex is dissipated too quickly behind the wing. Accelerated decay occurs as the

vortex travels into a portion of the grid that is not well resolved. The increasing cell

size adds numerical dissipation to the solution which causes the vortex to damp out

in a physically unrealistic fashion. Repositioning of the main element wake cut so

that it follows the vortex path would better resolve the flow and may maintain the

vortex in a more realistic manner. These grid modifications were not performed as

part of this study.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A numerical investigation of a simple high-lift system was performed using

an incompressible Navier-Stokes flow solver. The study began by investigating

take-off and landing configurations of a two-element, two-dimensional airfoil at a

range of angles of attack. Grid issues were addressed in two dimensions due to the

much lower computational requirements. The two-dimensional grid planes were

converted to a three-dimensional, full,span flap grid. This served as a validation

case for the three-dimensional flow solver. Once confidence in the three-

dimensional flow solver was established, a grid scheme was developed to model the

effects of a half-span flap. The half-span flap case provided a means to study the

flow physics associated with the flap edge.

The full-span results agreed well with experimental data for most cases.

Some differences in the pressure distributions were seen between the computed and

experimental results, particularly on the lower surface of the airfoil with high flap

deflections. Because three computational techniques (INS2D-UP, INS3D-UP, and

PMARC) produced very similar results, it is believed that the disagreement lies in an

experimental error or in a modeling inconsistency between the experiment and the

computations.

The grid scheme developed to represent the half-span flap configuration was

successful. The grid provided enough resolution to capture the large-scale influence

of the trailing vortex on the lift distribution of the wing. The change in the pressure

distributions created large amounts on spanwise flow and modified the separation

lines compared to the two-dimensional case. Secondary recirculation regions were

seen in the solution at the comers formed between the flap surface and the flap edge.
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The details of the tip vortex formation were not clearly seen in the current results ,

but the vortex trajectory could be followed over the upper surface of the flap once it

has formed.

Findings from this research provided a number of possible extensions of this

study. The effects of grid density at the flap edge could be investigated. An increase

in the number of spanwise and chordwise points at the edge may show the

formation of the tip vortex in more detail. Also, creating a single zone grid around

the flap edge would better resolve the flow in this area without any uncertainty due

to the Chimera boundaries. The wake cut of the main element could also be

positioned so that it follows the trajectory of the tip vortex. This would make use of

the large number of points along the wake cut and would more realistically model

the convection of the trailing vortex.

Steady state computations were performed in this study to reduce the

computational requirements of the research. Near the flap edge, a number of

unsteady phenomena, such as separated flows, exist. Therefore a time-accurate

investigation may be required to truly model the flow in this region. An unsteady

analysis is certainly required to track any movement of the vortex core, which could

influence the rest of the flowfield.
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Type

First

flight

Planform '

Typical
airloil

B-47/B-52 367-80/ 707-320/
KC- 135 E-3A 727 747/E-4A 767

f947/1952

Single-slotted
fowler flap

CLmax 1.8

1954

_=_
Double-

slotted

flap

1.78

1962

Double

slotted flap
and KnJeger
leading edge

2.2

1963

Slat and
triple-slotted
flap

2.79

1969

Variable camber

Iqueger and

triple-slotted flap

2.45

1981

Slat and

single-slotted
flap

2.45

Figure 1: Trends in Boeing transport high-lift system development
(from Reference 3).
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Figure 2: Lift efficiency versus high-lift system complexity (from Reference 4).
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Figure 3: Curved computational mesh.

r/

Computational plane

Figure 4: Relationship between physical and computational domains.
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C

Figure 5: NACA 632-215 Mod. B airfoil.

Figure 6: NACA 632-215 Mod. B airfoil with 30% chord Fowler flap

in take-off configuration.
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C

Figure 7: NACA 632-215 Mod. B airfoil with 30% chord Fowler flap

in landing configuration.

overlap

(neg. as shown)

Figure 8: Definition of gap and overlap.



Figure 9: Half-span flap geometry.
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Figure 10: A two-dimensional grid plane.

Figure 11: Overset grids before removing points inside flap surface.
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Figure 14: Hole-cut in a computational mesh.

Main Element Trailing Edge

Cut

Figure 15: Main element wake cut placement.
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Patch grid

Figure 17: Exposed surface at flapped-unflapped intersection.

Figure 18: Patch grid plane.
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Figure 19: Flap edge grid plane.

]_ Surface Boundary..... Chimera Boundary i

Figure 20: Boundary conditions at flapped-unflapped intersection.



Figure 21: Half-span flap surface grid.
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Figure 22: Lift coefficient versus angle of attack for two-dimensional take-off

configuration.
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Figure 23: Lift coefficient versus angle of attack for two-dimensional landing

configuration.
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Figure 24: Pressure distribution for two-dimensional take-off configuration, a =0 °.
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Figure 25: Pressure distribution for two-dimensional take-off configuration, c¢=10 °.
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Figure 28: Pressure distribution for two-dimensional landing configuration without
wind tunnel walls, a =0 °.
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Figure 29: Surface curvature for flapped main element.



77

_2

-8.0

-6.0

-4.0

-2.0

0.0

2.0
-0.2 1.4

, :w !A I

_ IW_l_ I

I 1 I I I I I

0 0.2 0.4 0.6 0.8 1 1.2

X/C

Figure 30: Pressure distributions for three spanwise stations on full-span flap,
a =10 °.
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Figure 31: Pressure distributions computed with INS2D-UP and INS3D-UP for fuU-

span flap, a=10 °.
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Figure 32: Experimental and computational full-span flap pressure distributions,
a=lO °.



Figure 33: Particle traces colored by velocity magnitude for half-spanfiap inlanding
configuration, a=lO °.

',,a
ko



Figure 34: Particle traces colored by velocity magnitude for half-span flap in take-off
configuration, a=lO °.
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Figure 35: Lift-distribution for landing case, a =10 °.
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Figure 36: Lift-distribution for take-off case, a =10 °.
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Figure 37: Spanwise pressure variation for landing configuration unflapped main
element, a =10 °.
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Figure 38: Spanwise pressure variation for landing configuration flapped main
element, _=10 °.
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QO

•uop, eart_.quo_ _u!puei ao:I s_o_a_ op!_d _ujans d_ki :017aart_!zI

_u!I u°!:Jeaed_s G-Z

:i:_:?_:_._:?.):_:)_:_:?:!:_:i:_.'.89"::!:".s_!:_:'..::_'_:_:_:_:i_.::!:!:_:_;_:i?:Y._:_._:':!!:i_!_._::!:i:?&_:!_:_'b!:!:_:!_s:_!_:i:i_,l_:!_.,._:_i_."..:?._:_i:_:_?:_ _¢,_ ___

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::_:::_::::::::::::::::"::-"-:""::;_:::L_i:::::::::::::::::::::::::_::::::::_ _:_iiiiii_:_ ......

ii_i_:iiii',_ii!i::_!!:i_iii::i!ili::iiiiiiiiiiiiiiiiiiii!ilili::ii_iiiii_:i_:ii_ii::i_i_:i:,iiiiiiiiiii':i':i_iiiiiiiii:_iiiiiiiiiiiiiiii_i::i!_ii::ii_ii!iiiii_i::iiiiiiiiiiiiiii!i::i!!:_iiiiiii!iii_iiiiiiiiiiii_iiiiiii_:i:ii!_:iiii!!i':itlt!ii!!!i_

I i;_i:iiii_iiiiii:iii:i_ii!!iii{iiii_iii_:_i!iiiiiiiiiiiiiii_ii!iiii:!ii!i_:_:iiiii!iii_ii!_iiiiiiii_ii!iiii!:ii!i{'i_iiiiiiii!i_iiii:iiii!'i!iiiiii!i!i:iiiii_{_ii'ii_:iiii!iii':iii_ii_ii!iiii!iii:ijl_:'iiiiiiiiii:i!{_:ili i:iiii_

:':: ::::: : :::::.-:: ::-: :::: :-:::: :::: ::::: :::: :4 :::::::::::::::::::::::::::::::::::::::::::::: ::: :::::::::::::::::?:::::::::: .::::::_:::i: :_:i::!: !: i::::.:::-:.:i:i :i:_:i:! _:i:!:::::::::::::::::::::::::::::::::?:i::_:_i:?:?i::;i:i:2:!:i:_::! _: :_:_:::::::::::::::::::::::::::::::::::: :_i ::):i:i:! : : :i:;::_



85

-4.0

-3.0

-2.0
._

-z.o

0.0

1.0

2.0

: I ..... 2-o |
I.... 3-ol

J

I I I T I
1 1.1 1.1 1.2 1.2 1.3

X/c

Figure 41: Pressure distribution comparison between half-span and airfoil

computations for landing configuration flap element, a =10 °.
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Figure 43: Pressure distribution comparison between half-span and airfoil

computations for landing configuration unflapped element, a =10 °.
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Figure 44: Spanwise pressure variation for landing configuration unflapped main
element, a=lO °.
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Figur e 45: Spanwise pressure variation for landing configuration flapped main
element, a =10 °.
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Figure 46: Spanwise pressure variation for landing configuration flap element,
a=lO °.
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Figure 47: Flap station numbering.

Figure 48: Particle traces at station I on flap element in landing position.
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Figure 49: Particle traces at station 2 on flap element in landing position.

Figure 50: Particle traces at station 3 on flap element in landing position.
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Figure 51:Particle tracesat station 4 on flap element in landing position.

Figure 52: Particle traces at station 5 on flap element in landing position.
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Figure 53:Particle traces at station 6 on flap element in landing position.

Figure 54:Particle traces at station 7 on flap element in landing position.
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Figure 55: Particle traces at station 8 on flap element in landing position.



Figure 56: Particle traces colored by pressure at the flap edge of landing

configuration.
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Figure 57: Secondary recirculation regions on flap edge for landing configuration.


